Most cases of breast cancer occur by chance. However, breast cancer can occur more often than usual in some families because of their genetic make-up. This type of breast cancer is called hereditary breast cancer. In these cases, a mutated gene is passed from parent to child. This mutated gene increases the risk of developing breast cancer.

About 5 to 10 percent of all breast cancers in the U.S. are thought to be hereditary. Hereditary breast cancer occurs more often in younger women and men and can be more aggressive than other types of breast cancer. Women with inherited breast cancer genes also have increased risk for developing other cancers, particularly ovarian cancer.

Two gene mutations commonly associated with hereditary breast cancer are mutations in BRCA1 (BReast CAncer gene one) and BRCA2 (BReast CAncer gene two). But BRCA mutations account for only 20 to 25 percent of all hereditary breast cancers. There are many other inherited gene mutations that may increase the risk of developing breast cancer. Some of these are known and include mutations in the PALB2, CHEK2, ATM and TP53 genes. But many are yet to be discovered.

Identifying other inherited gene mutations is an important step in helping women and men understand their individual risk, and empowering them to take preventive or protective measures for their future.

What We're Investigating

- Identifying the cellular factors that affect why some women with a BRCA mutation develop breast cancer and others do not
- Using cutting edge genomic technology to identify new genes linked to inherited breast cancer
- Testing whether Everolimus, a drug used to treat metastatic ER+ breast cancer and other cancers, can be used to prevent breast cancer in women with a BRCA mutation

What We've Learned

- Mutations in a gene called RECQL are associated with inherited breast cancer and may increase risk by as much as 50 percent, depending on the mutation.
- An inherited mutation in the PALB2 gene may increase the risk of breast cancer by 30 to 60 percent.
- Including a family history of other cancers, such as prostate and pancreas, may help improve breast cancer risk prediction tools like BRCAPRO.