The old paradigm of one blockbuster drug for every breast cancer patient is ancient history. Breast cancer has entered an era of precision medicine (also called personalized medicine), where treatment selection for each person is becoming individualized or customized.

An important part of precision medicine is the use of targeted therapies. Unlike standard chemotherapy—which kills both cancer and normal cells—targeted therapies attack specific molecules that cancer cells use to grow, divide and spread. By attacking molecules that are specific to the tumor, targeted therapies may be more effective at killing cancer than other types of treatments and less harmful to normal cells.

The best target for therapy is a molecule that is present in cancer cells and absent, or present at low levels, in normal cells. An example of a targeted therapy for breast cancer is trastuzumab, which specifically targets breast cancer cells that make too much of the HER2 protein.

Targeted therapies for breast cancer are becoming more common as researchers discover more about the uniqueness of each person’s tumor. They help doctors tailor breast cancer treatment based on the characteristics of each individual's tumor.

Learn more about precision medicine
http://sgk.mn/1odOlJ8

Learn more about breast cancer
http://sgk.mn/1hYpOUv

More than $54 million in over 110 research grants focused on targeted therapies

Want to read more about our research on other types of biomarkers and precision medicine?

Download the other Fast Facts in this series
http://sgk.mn/1xi7r82

What We’ve Learned from Komen-funded research

There are at least six different types of triple negative breast cancer, which may be more effectively treated with novel targeted therapies (currently in clinical trials) than with current chemotherapies.

A targeted therapy that uses a small molecule called angiotensin (produced by the body for normal cell and blood vessel growth) may stop breast cancer metastasis.

Targeting a second protein found in HER2-positive breast cancer, called HER3, improves response of HER2 breast cancers to existing drugs and may prevent drug resistance.